Improved classification of medical data using abductive network committees trained on different feature subsets
نویسنده
چکیده
This paper demonstrates the use of abductive network classifier committees trained on different features for improving classification accuracy in medical diagnosis. In an earlier publication, committee members were trained on different subsets of the training set to ensure enough diversity for improved committee performance. In situations characterized by high data dimensionality, i.e. a large number of features and a relatively few training examples, it may be more advantageous to split the feature set rather than the training set. We describe a novel approach for tentatively ranking the features and forming subsets of uniform predictive quality for training individual members. The abductive network training algorithm is used to select optimum predictors from the feature set at various levels of model complexity specified by the user. Using the resulting tentative ranking, the features are grouped into mutually exclusive subsets of approximately equal predictive power for training the members. The approach is demonstrated on three standard medical diagnosis datasets (breast cancer, heart disease, and diabetes). Three-member committees trained on different feature subsets and using simple output combination methods reduce classification errors by up to 20% compared to the best single model developed with the full feature set. Results are compared with those reported previously with members trained through splitting the training set. Training abductive committee members on feature subsets of approximately equal predictive power achieves both diversity and quality for improved committee performance. Ensemble feature subset selection can be performed using GMDH-based learning algorithms. The approach should be advantageous in situations characterized by high data dimensionality.
منابع مشابه
Abductive network committees for improved classification of medical data.
OBJECTIVES To introduce abductive network classifier committees as an ensemble method for improving classification accuracy in medical diagnosis. While neural networks allow many ways to introduce enough diversity among member models to improve performance when forming a committee, the self-organizing, automatic-stopping nature, and learning approach used by abductive networks are not very cond...
متن کاملImproving Electric Load Forecasts Using Network Committees
Accurate daily peak load forecasts are important for secure and profitable operation of modern power utilities, with deregulation and competition demanding ever-increasing accuracies. Machine learning techniques including neural and abductive networks have been used for this purpose. Network committees have been proposed for improving regression and classification accuracy in many disciplines, ...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 80 2 شماره
صفحات -
تاریخ انتشار 2005